Floating Point Guidelines

Guidelines

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

Guideline 1 - Example

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

This is false
Example:

```
float a = 0.1f;
```

if (10*a == 1.0f)
std: : cout << "no output\n";

Guideline 1 - Example

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

This is false

Example:

 float \(a=0.1 f ;\)
 if \(10 * a==1.0 f)\)
 Problem:
$0.1 f$ not representable

Guideline 1 - Example

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

This is false

Example:

```
float a = 0.1f;
```

if $10 * a==1.0 f)$

Problem:
0.1 f not representable

$$
\begin{aligned}
& \\
& \text { (rounding) } \rightarrow=\frac{24 \mathrm{bit}}{0.1} \\
& 0.10000000149 \ldots==1.1001100110011001100110011 \ldots \cdot 2^{-4} \\
& 1.10011001100110011001101 2^{-4}
\end{aligned}
$$

Guidelines

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

Guideline 2 - Example

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

Example:

```
float a = 67108864.0f + 1.0f;
if (a > 67108864.0f)
    std::cout << "This is not output ... \n";
```


Guideline 2 - Example

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

```
Example:
float a = 67108864.0f + 1.0f;
if (a > 67108864.0f)
    std::cout << "This is not output ... \n";
```


Guideline 2 - Example

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

```
Example:
float a = 67108864.0f + 1.0f;
if (a > 67108864.0f)
    std::cout << "This is not output ... \n";
```

24bit

$$
\begin{aligned}
67108864 & =\overparen{1.000000000000000000000000} \cdot 2^{26} \\
+1 & =0.00000000000000000000000001 \cdot 2^{26} \\
\hline 67108865 & =1.00000000000000000000000001 \cdot 2^{26}
\end{aligned}
$$

Guideline 2 - Example

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

```
Example:
float a = 67108864.0f + 1.0f;
if (a > 67108864.0f)
    std::cout << "This is not output ... \n";
```

24bit

$$
\begin{aligned}
67108864 & =\overleftarrow{1.000000000000000000000000} \cdot 2^{26} \\
+1 & =0.00000000000000000000000001 \cdot 2^{26} \\
\hline 67108865 & =1.00000000000000000000000001 \cdot 2^{26} \\
\text { (rounding) } \rightarrow 67108864 & =1.000000000000000000000000 \cdot 2^{26}
\end{aligned}
$$

Guidelines

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

Guideline 2:

«Avoid the addition of numbers of extremely different sizes!»

Guideline 3:
«Avoid the subtraction of numbers of similar sizes!»

Guideline 3 - Example

Guideline 3:
«Avoid the subtraction of numbers of similar sizes!»

```
Example:
float volume_exact = 35.828125f;
float volume_approx = 35.328125f;
float diff = volume_exact
    - volume_approx;
```


Guideline 3 - Example

Guideline 3:
«Avoid the subtraction of numbers of similar sizes!»

$$
\text { float diff }=\text { volume_exact }
$$

absolutely not 0

Due to rounding errors

$$
\text { float volume_exact }=35.828125 f
$$

$$
\text { float volume_approx }=35.328125 f
$$

- volume_approx;

Danger:
Affects later computations.

